miércoles, 5 de octubre de 2011

FSK

La Modulación por desplazamiento de frecuencia o FSK, (Frequency Shift Keying) es una técnica de transmisión digital de información binaria (ceros y unos) utilizando dos frecuencias diferentes. La señal moduladora solo varía entre dos valores de tensión discretos formando un tren de pulsos donde un cero representa un "1" o "marca" y el otro representa el "0" o "espacio".
En la modulación digital, a la relación de cambio a la entrada del modulador se le llama bit-rate y tiene como unidad el bit por segundo (bps).
A la relación de cambio a la salida del modulador se le llama baud-rate. En esencia el baud-rate es la velocidad o cantidad de símbolos por segundo.
En FSK, el bit rate = baud rate. Así, por ejemplo, un 0 binario se puede representar con una frecuencia f1, y el 1 binario se representa con una frecuencia distinta f2.
El módem usa un VCO, que es un oscilador cuya frecuencia varía en función del voltaje aplicado.
Indice modulación general para una MFSKn = (2fd) / [(M − 1)Rsymb]
Siendo: fd: maxima desviación en frecuencia; Rsymb: Velocidad de símbolo por segundo.

PSK

La modulación por desplazamiento de fase o PSK (Phase Shift Keying) es una forma de modulación angular que consiste en hacer variar la fase de la portadora entre un número de valores discretos. La diferencia con la modulación de fase convencional (PM) es que mientras en ésta la variación de fase es continua, en función de la señal moduladora, en la PSK la señal moduladora es una señal digital y, por tanto, con un número de estados limitado.

Dependiendo del número de posibles fases a tomar, recibe diferentes denominaciones. Dado que lo más común es codificar un número entero de bits por cada símbolo, el número de fases a tomar es una potencia de dos. Así tendremos BPSK con 2 fases (equivalente a PAM), QPSK con 4 fases (equivalente a QAM), 8-PSK con 8 fases y así sucesivamente. A mayor número de posibles fases, mayor es la cantidad de información que se puede transmitir utilizando el mismo ancho de banda, pero mayor es también su sensibilidad frente a ruidos e interferencias.
Las modulaciones BPSK y QPSK son óptimas desde el punto de vista de protección frente a errores. Conceptualmente hablando, la diferencia entre distintos símbolos (asociados a cada fase) es máxima para la potencia y ancho de banda utilizados. No pasa lo mismo con 8-PSK, 16-PSK o superiores, para las que existen otras modulaciones más eficientes.
La gran ventaja de las modulaciones PSK es que la potencia de todos los símbolos es la misma, por lo que se simplifica el diseño de los amplificadores y etapas receptoras (reduciendo costes), dado que la potencia de la fuente es constante.
Existen 2 alternativas de modulación PSK: PSK convencional, donde se tienen en cuenta los desplazamientos de fase, y PSK diferencial, en la cual se consideran las diferencias entre un salto de fase y el anterior.

Definiciones.

Para establecer matemáticamente las tasas de error correspondientes a cada modulación, definiremos algunos conceptos:
  • Eb = Energía por bit
  • Es = Energía por símbolo = kEb con k bits por símbolo
  • Tb = Duración del bit
  • Ts = Duración del símbolo
  • N0 / 2 = Densidad espectral de potencia de ruido(W/Hz)
  • Pb = Probabilidad de bit erróneo
  • Ps = Probabilidad de símbolo erróneo

 Cálculo de tasas de error.

La función Q(x) se utiliza para calcular la tasa de errores en una modulación. Es la forma normalizada de la función de error gaussiana complementaria:
Q(x) = \frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}e^{-t^{2}/2}dt = \frac{1}{2}\,\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right),\ x\geq{}0.

Tipos de modulaciones PSK.


Las modulaciones PSK pueden divirse en dos grandes grupos: las modulaciones PSK convencionales, en las que la información se codifica en el valor del salto de fase, y las modulaciones PSK diferenciales, en las que el valor del salto de fase respecto al del salto anterior, es el que contiene la información.


PSK convencional.

En el sistema PSK convencional es necesario tener una portadora en el receptor para sincronización, o usar un código autosincronizante. Esto supone tener un receptor más complejo.


BPSK(Binary Phase-Shift Keying).

BPSK = 2-PSK


Diagrama de constelación para BPSK.
Consta de la modulación de desplazamiento de fase de 2 símbolos. También se la conoce como 2-PSK o PRK(Phase Reversal Keying).
Es lo más sencilla de todas, puesto que solo emplea 2 símbolos, con 1 bit de información cada uno. Es también la que presenta mayor inmunidad al ruido, puesto que la diferencia entre símbolos es máxima (180º). Dichos símbolos suelen tener un valor de salto de fase de 0º para el 1 y 180º para el 0. En cambio, su velocidad de transmisión es la más baja de las modulaciones de fase. La descripción matemática de una señal modulada BPSK es la siguiente: s(t) = Am(t)cos(2πfct)
,donde m(t) = 1 para el bit 1 y m(t) = − 1 para el bit 0, A es la amplitud de la portadora y fc su frecuencia.
Ancho de banda:
Velocidad de transmisión: La velocidad de transmisión de BPSK es baja, debido a que cada símbolo solo aporta un bit de información.
Tasa de errores: La tasa de errores de BPSK es baja, debido a su máxima separación entre saltos de fase. Su tasa de bit erróneos con ruido blanco gaussiano y aditivo se puede calcular como:
QPSK(Quadrature Phase-Shift Keying)
QPSK = 4-PSK
Desplazamiento de fase de 4 símbolos, desplazados entre sí 90º. Normalmente se usan como valores de salto de fase 45º, 135º, 225º, y 315º. Cada símbolo aporta 2 bits. Suele dividirse el flujo de cada bit que forman los símbolos como I y Q.
El diagrama de constelación muestra 4 símbolos equiespaciados. La asignación de bits a cada símbolo suele hacerse mediante el código Gray, que consiste en que entre dos símbolos adyacentes los símbolos solo se diferencian en 1 bit. Esto se escoge así para minimizar la tasa de bits erróneos.


Diagrama de constelación paraQPSK con código Gray.

La probabilidad de bit erróneo para QPSK es la misma que para BPSK:
La tasa de símbolos erróneos se puede calcular con la siguiente fórmula:

\,\!P_s= 1 - \left( 1 - P_b \right)^2
= 2Q\left( \sqrt{\frac{E_s}{N_0}} \right) - Q^2 \left( \sqrt{\frac{E_s}{N_0}} \right).

8PSK


Desplazamiento de fase de 8 símbolos

 16PSK


Desplazamiento de fase de 16 símbolos

 OQPSK(Offset Quadrature PSK)


QPSK con datos I y Q desplazados temporalmente medio periodo de símbolo

SOQPSK(Shaped OQPSK)


La licencia libre en forma de compensar QPSK (SOQPSK) es interoperable con Feher patentados QPSK (FQPSK), en el sentido de que la integración-and-dump compensar QPSK detector produce el mismo resultado no importa que tipo de transmisor es usado [1] .
Este tipo de modulación trabaja en forma sincronizada con los vectores I y Q, de manera que ante transiciones de señal entre un símbolo y otro lo haga siempre con amplitud constante, aún cuando las transiciones son abruptas (en lugar de viajar instantaneamente desde un símbolo al siguiente o en forma lineal, lo hace siempre en forma sincronizada alrededor del círculo de amplitud constante). La descripción estándar de SOQPSK-TG implica símbolos ternarios.

PSK diferencial


Al contrario que las modulaciones PSK convencionales, no necesita recuperar la señal portadora para realizar la demodulación. Es diferencial puesto que la información no esta contenida en la fase absoluta, sino en las transiciones. La referencia de fase se toma del intervalo inmediato anterior, con lo que el detector decodifica la información digital basándose en diferencias relativas de fase.

DBPSK


BPSK diferencial

 DQPSK


QPSK diferencial

π/4-DQPSK


QPSK diferencial en la que los símbolos rotan π/4

8-DPSK


Desplazamiento de fase diferencial de 8 símbolos

Modulacion PCM.

La modulación por impulsos codificados (MIC o PCM por sus siglas inglesas de Pulse Code Modulation) es un procedimiento de modulación utilizado para transformar una señal analógica en una secuencia de bits (señal digital), este método fue inventado por Alec Reeves en 1937. Una trama o stream PCM es una representación digital de una señal analógica en donde la magnitud de la onda analógica es tomada en intervalos uniformes (muestras), cada muestra puede tomar un conjunto finito de valores, los cuales se encuentran codificados.

Introducción.

En la figura  observamos que una onda senoidal está siendo muestreada y cuantificada en PCM. Se toman las muestras a intervalos de tiempo regulares (mostrados como segmentos sobre el eje X). De cada muestra existen una serie de posibles valores (marcas sobre el eje Y). A través del proceso de muestreo la onda se transforma en código binario (representado por la altura de las barras grises), el cual puede ser fácilmente manipulado y almacenado.

En la Figura 1 se muestra la disposición de los elementos que componen un sistema que utiliza la modulación por impulsos codificados. Por razones de simplificación, sólo se representan los elementos para la transmisión de tres canales.




Figura 1.- Disposición de elementos en un sistema MIC
En la Figura 2 tenemos las formas de onda en distintos puntos del sistema anteriormente representado


 Figura 2.- Formas de onda en diversos puntos de un sistema MIC
Las funciones de las distintas etapas de las que consta el sistema se detallan a continuación.

Muestreo.

Consiste en tomar muestras (medidas) del valor de la señal n veces por segundo, con lo que tendrán n niveles de tensión en un segundo.
Así, cuando en el sistema de la Figura 1 aplicamos en las entradas de canal las señales (a), (b) y (c) (Figura 2), después del muestreo obtenemos la forma de onda.
Para un canal telefónico de voz es suficiente tomar 8.000 muestras por segundo, o, lo que es lo mismo, una muestra cada 125 μseg. Esto es así porque, de acuerdo con el teorema de muestreo, si se toman muestras de una señal eléctrica continua a intervalos regulares y con una frecuencia doble a la frecuencia máxima que se quiera muestrear, dichas muestras contendrán toda la información necesaria para reconstruir la señal original.
Como en este caso tenemos una frecuencia de muestreo de 8 kHz (período 125 μseg), sería posible transmitir hasta 4 kHz, suficiente por tanto para el canal telefónico de voz, donde la frecuencia más alta transmitida es de 3,4 kHz.
El tiempo de separación entre muestras (125 μseg) podría ser destinado al muestreo de otros canales mediante el procedimiento de multiplexación por división de tiempo (TDM).

Cuantificación.

Por eso en la cuantificación se asigna un determinado valor discreto a cada uno de los niveles de tensión obtenidos en el muestreo. Como las muestras pueden tener un infinito número de valores en la gama de intensidad de la voz, gama que en un canal telefónico es de aproximadamente 60 dB, o, lo que es lo mismo, una relación de tensión de 1000:1, con el fin de simplificar el proceso, lo que se hace es aproximar al valor más cercano de una serie de valores predeterminados.

Codificación.

En la codificación, a cada nivel de cuantificación se le asigna un código binario distinto, con lo cual ya tenemos la señal codificada y lista para ser transmitida. La forma de una onda sería la indicada como (f) en la Figura 2.F
En telefonía, la señal analógica vocal con un ancho de banda de 4KHz se convierte en una señal digital de 1024 Kbps. En telefonía pública se suele utilizar transmisión plesiócrona, donde, si se usa un E1, podrían intercalarse otras 31 señales adicionales. Se transmiten, así, 32x64000 = 2.048.000 bps.

Recuperación de la señal analógica.

En la recuperación se realiza un proceso inverso, con lo que la señal que se recompone se parecerá mucho a las originales (a), (b) y (c), si bien durante el proceso de cuantificación, debido al redondeo de las muestras a los valores cuánticos, se produce una distorsión conocida como ruido de cuantificación. En los sistemas normalizados, los intervalos de cuantificación han sido elegidos de tal forma que se minimiza al máximo esta distorsión, con lo que las señales recuperadas son una imagen casi exacta de las originales. Dentro de la recuperación de la señal, ya no se asignan intervalos de cuantificación en lugar de ello son niveles, equivalentes al punto medio del intervalo IC en el que se encuentra la muestra normalizada (Aclaración de WDLC).


MODULACIÓN .
La amplia naturaleza de las señales analógicas es evidente, cualquier forma de onda está disponible con toda seguridad en el ámbito analógico, nos encontramos con una onda original y una distorsión de la que tenemos que identificar la onda original de la distorsionada. Aquí surge la necesidad del audio digital ya que nos permite separar de la señal original el ruido y la distorsión. La calidad de una señal de audio no es función del mecanismo de lectura, sino que parámetros tales como respuesta en frecuencia, linealidad y ruido son sólo funciones del conversor digital - analógico empleado.
En el proceso de conversión de la forma análoga a la forma digital y viceversa aparecen tres términos matemáticos o lógicos básicos: el muestreo, la cuantización y la codificación. El muestreo es el proceso de tomar medidas instantáneas de una señal análoga cambiante en el tiempo, tal como la amplitud de una forma de onda compleja. La información muestreada permite reconstituir más o menos una representación de la forma de onda original. Sin embargo, si las muestras son relativamente escasas (o infrecuentes), la información entre las muestras se perderá. El teorema de muestreo o Teorema de Nyquist establece que es posible capturar toda la información de la forma de onda si se utiliza una frecuencia de muestreo del doble de la frecuencia más elevada contenida en la forma de onda. En los sistemas telefónicos la velocidad de muestreo ha sido establecida a 8000 muestras por segundo. Una vez que la muestra y su valor han sido obtenidos, la cuantización es el siguiente proceso para la reducción de la señal análoga compleja; éste permite aproximar la muestra a uno de los niveles de una escala designada. Por ejemplo, tomando una escala cuyos valores máximo y mínimo son quince y cero, respectivamente, y el rango está dividido en 16 niveles, las muestras tendrán que ser aproximadas a uno de estos niveles. Hay que notar que el proceso de cuantización puede introducir un ruido de cuantización; una diferencia entre el valor original de la amplitud muestreada y el valor aproximado correspondiente a la escala seleccionada, donde la magnitud de este error estará determinada por la fineza de la escala empleada.
Dentro de las distintas técnicas de conversión de señales, el sobremuestreo (oversampling) aparece se ha hecho popular en los últimos años debido a que evita muchos de los inconvenientes encontrados en los métodos convencionales de conversión digital - analógica (en adelante DAC) y analógica - digital (en adelante ADC), especialmente en aquellas aplicaciones que requieren alta resolución de representación a baja frecuencia de las señales. Los convertidores convencionales tienen dificultades a la hora de ser implementados en tecnología VLSI (Very Large Scale Integration). Estas dificultades son debidas a que los métodos convencionales precisan componentes analógicos e sus filtros y circuitos de conversión que pueden ser muy vulnerables al ruido y a las interferencias, sin embargo estos métodos precisan una velocidad de muestreo mucho menor, la frecuencia de Nyquist de la señal.


PCM, Modulacion por Codificacion de Pulsos


Se basa como la anterior en el teorema de muestreo: " Si una señal f(t) se muestrea a intervalos regulares de tiempo con una frecuencia mayor que el doble de la frecuencia significativa más alta de la señal, entonces las muestras así obtenidas contienen toda la información de la señal original. La función f(t) se puede reconstruir a partir de estas muestras mediante la utilización de un filtro paso - bajo". Es decir, se debe muestrear la señal original con el doble de frecuencia que ella, y con los valores obtenidos, normalizándolos a un número de bits dado (por ejemplo, con 8 bits habría que distinguir entre 256 posibles valores de amplitud de la señal original a cuantificar) se ha podido codificar dicha señal.
En el receptor, este proceso se invierte, pero por supuesto se ha perdido algo de información al codificar, por lo que la señal obtenida no es exactamente igual que la original (se le ha introducido ruido de cuantización). Hay técnicas no lineales en las que es posible reducir el ruido de cuantización muestreando a intervalos no siempre iguales.

PROCESO MODULACIÓN PCM
  • Codificación Analógica-Digital Modulación de Amplitud de Pulso(PAM)
  • Modulación PCM
  • Tasa de prueba  
 

Codificación Analógica - Digital
    Este tipo de codificación es la representación de información analógica en una señal digital. Por ejemplo para grabar la voz de un cantante sobre un CD se usan  se usan significados digitales para grabar la información analógica. Para hacerlos, se debe de reducir el nº infinito potencial posible de valores en un mensaje analógico de modo que puedan ser representados como una cadena digital con un mínimo de información posible. La figura 1 nos muestra la codificación analógica - digital llamada codec (codificador-decodificador).  

             Figura 1  Codificación analógica - digital


En la codificación analógica - digital, estamos representando la información contenida a partir de una serie de pulsos digitales (1s ó 0s).
    La estructura de la señal traducida no es el problema. En su lugar el problema es como hacer pasar información de un número de valores infinitos a un número de valores limitados sin sacrificar la calidad.
Modulación de amplitud de pulso (PAM)
    El primer paso en la codificación analógica - digital se llama PAM. Esta técnica recoge información análoga, la muestra (ó la prueba), y genera una serie de pulsos basados en los resultados de la  prueba. El término prueba se refiere a la medida de la amplitud de la señal a intervalos iguales.
    El método de prueba usado en PAM es más eficaz en otras áreas de ingeniería que en la comunicación de datos (informática). Aunque PAM está en la base de un importante método de codificación analógica - digital llamado modulación de código de pulso (PCM).
    En PAM, la señal original se muestra a intervalos iguales como lo muestra la figura 2. PAM usa una técnica llamada probada y tomada. En un momento dado el nivel de la señal es leído y retenido brevemente. El valor mostrado sucede solamente de modo instantáneo a la forma actual de la onda, pero es generalizada por un periodo todavía corto pero medible en el resultado de PAM  

Figura 2   PAM.


El motivo por el que PAM sea ineficaz en comunicaciones es por que aunque traduzca la forma actual de la onda a una serie de pulsos, siguen teniendo amplitud (pulsos)(todavía señal analógica y no digital). Para hacerlos digitales, se deben de modificar usando modulación de código de pulso (PCM)  
Modulación PCM
    PCM modifica los pulsos creados por PAM para crear una señal completamente digital. Para hacerlo, PCM, en primer lugar, cuantifica los pulsos de PAM. La cuantificación es un método de asignación de los valores íntegros a un rango específico para mostrar los ejemplos. Los resultados de la cuantificación están representados en la figura 3.  



PCM se construye actualmente a través de 4 procesos separados: PAM, cuantificación, codage digital-digital. La figura 6 muestra el proceso entero en forma de gráfico. PCM es el método de prueba usado para digitalizar la voz en la transmisión de línea-T en los sistemas de telecomunicaciones en América del Norte.
             Figura 6  De señal analógica a código digital PCM



Tasa de Prueba
    Como se puede ver a partir de las figuras anteriores, la exactitud de la reproducción digital de una señal analógica depende del número de pruebas tomadas. Usando PAM y PCM se puede reproducir una onda con exactitud si se toman una infinidad de pruebas, o se puede reproducir de forma más generalizada si se tomas 3 pruebas. La cuestión es: ¿cuántas muestras son suficientes?.
    Actualmente , se requiere  poca información para la reconstrucción de señal analógica. En lo referente al Teorema de Nyquist, para asegurarse que la reproducción exacta de una señal analógica original usando PAM, la tasa de prueba debe ser al menos el doble de la frecuencia máxima de la señal original. De este modo, si deseamos hacer muestra con la información de voz de un teléfono que tiene como frecuencia máxima 3300 HZ, la tasa de muestra debe ser de 6600 pruebas/s. En la práctica, actualmente se toman 8000 muestras para compensar las imperfecciones del proceso.  
            Figura 7  Teorema de Nyquist 




TERMINOS IMPORTANTES
PCM (PULSE CODE MODULATION)

Modulación por código de impulsos.- Es un proceso digital de modulación para convertir una señal analógica en un código digital. La señal analógica se muestrea, es decir, se mide periódicamente. En un convertidor analógico/digital, los valores medidos se cuantifican, se convierten en un número binario y se descodifican en un tren de impulsos. Este tren de impulsos es una señal de alta frecuencia portadora de la señal analógica original.

PCM BINARY CODE

Código binario PCM.- Un código de impulsos en el que los valores cuantificados son identificados por números tomados en orden. Este término no debe emplearse para transmisión por líneas.

PCM MULTIPLEX EQUIPMENT

Equipo múltiplex PCM.- Un equipo para derivar una señal digital simple, a una velocidad de dígitos definida, de dos o más canales analógicos mediante una combinación de modulación por código de impulsos y un multiplexado por división de tiempo (multiplexor) y también para realizar la función inversa (demultiplexor). La descripción debe ir seguida de una velocidad de dígitos binarios equivalente; p. ej., equipo múltiplex PCM de 2.048 kbit/s.

martes, 27 de septiembre de 2011

Convertidor digital-analógico de red R-2R

Los convertidores digital-analógico (DAC) de escalera o red R-2R hacen uso de la red R-2R para generar una señal analógica a partir de los datos digitales que se presenten en sus entradas. A diferencia del DAC de pesos ponderados, el de red R-2R solo necesita dos valores de resistencias. Lo que lo hace mucho más sencillo.
Al igual que el modelo de resistencias ponderadas, consta de una red de conmutadores, una referencia estable de tensión y la red o escalera R-2R de precisión. La salida se conecta a un circuito aislador que permite conectarlo sin carga a la siguiente etapa. El análisis de la escalera se realiza evaluando los equivalentes de Thêvenin desde los puntos señalados. Desde cualquiera de estos puntos la resistencia equivalente resulta ser R. En efecto, por ejemplo, desde P0 es trivial ver que el equivalente paralelo es 2R//2R=R. Desde P1 hay que hacer algo más pero también es fácil ver que vale R. Lo vemos en la figura.
En los DAC multiplicados, la escalera R-2R usa el voltaje de referencia como una entrada. Este puede variar sobre el rango máximo de voltaje del amplificador y es multiplicado por el código digital.

Proceso de Conversion de una Señal Analogica a Digital

La conversión analógica-digital (CAD) consiste en la transcripción de señales analógicas en señales digitales, con el propósito de facilitar su procesamiento (codificación, compresión, etc.) y hacer la señal resultante (la digital) más inmune al ruido y otras interferencias a las que son más sensibles las señales analógicas.

Comparación de las señales analógica y digital
Una señal analógica es aquella cuya amplitud (típicamente tensión de una señal que proviene de un transductor y amplificador) puede tomar en principio cualquier valor, esto es, su nivel en cualquier muestra no está limitado a un conjunto finito de niveles predefinidos como es el caso de las señales cuantificadas.
Esto no quiere decir que se traten, en la práctica de señales de infinita precisión (un error muy extendido): las señales analógicas reales tienen todas un ruido que se traduce en un intervalo de incertidumbre. Esto quiere decir que obtenida una muestra de una señal analógica en un instante determinado, es imposible determinar cuál es el valor exacto de la muestra dentro de un intervalo de incertidumbre que introduce el ruido. Por ejemplo, se mide 4,3576497 V pero el nivel de esa muestra de la señal de interés puede estar comprendida entre 4,35 V y 4,36 V y no es físicamente posible determinar ésta con total precisión debido a la naturaleza estocástica del ruido. Sólo el más puro azar determina qué valores se miden dentro de ese rango de incertidumbre que impone el ruido. Y no existe (ni puede existir) ningún soporte analógico sin un nivel mínimo de ruido, es decir, de infinita precisión. Por otro lado, si se pudiera registrar con precisión infinita una señal analógica significaría, de acuerdo con la Teoría de la Información, que ese medio serviría para registrar infinita información; algo totalmente contrario a las leyes físicas fundamentales de nuestro universo y su relación con la entropía de Shannon.
En cambio, una señal digital es aquella cuyas dimensiones (tiempo y amplitud) no son continuas sino discretas, lo que significa que la señal necesariamente ha de tomar unos determinados valores fijos predeterminados en momentos también discretos.
Las señales analógicas no se diferencian, por tanto, de las señales digitales en su precisión (precisión que es finita tanto en las analógicas como en las digitales) o en la fidelidad de sus formas de onda (distorsión). Con frecuencia es más fácil obtener precisión y preservar la forma de onda de la señal analógica original (dentro de los límites de precisión impuestos por el ruido que tiene antes de su conversión) en las señales digitales que en aquéllas que provienen de soportes analógicos, caracterizados típicamente por relaciones señal a ruido bajas en comparación.

lunes, 26 de septiembre de 2011

Filtros pasa bajas.

Un filtro pasa bajo corresponde a un filtro caracterizado por permitir el paso de las frecuencias más bajas y atenuar las frecuencias más altas. El filtro requiere de dos terminales de entrada y dos de salida, de una caja negra, también denominada cuadripolo o bipuerto, así todas las frecuencias se pueden presentar a la entrada, pero a la salida solo estarán presentes las que permita pasar el filtro. De la teoría se obtiene que los filtros están caracterizados por sus funciones de transferencia, así cualquier configuración de elementos activos o pasivos que consigan cierta función de transferencia serán considerados un filtro de cierto tipo.
En particular la función de transferencia de un filtro pasa bajo de primer orden corresponde a H(s)=k\frac{1}{1+\frac{s}{\omega_c}} \,\!, donde la constante k \,\! es sólo una ponderación correspondiente a la ganancia del filtro, y la real importancia reside en la forma de la función de transferencia \frac{1}{1+\frac{s}{\omega_c}} \,\!, la cual determina el comportamiento del filtro. En la función de transferencia anterior \omega_c \,\! corresponde a la frecuencia de corte propia del filtro, aquel valor de frecuencia para el cual la amplitud de la señal de entrada se atenua 3 dB.
De forma análoga al caso de primer orden, los filtros de pasa bajo de mayor orden también se caracterízan por su función de transferencia, por ejemplo la de un filtro paso bajo de segundo orden corresponde a H(s)=K\frac{\omega_o^2}{s^2+2\xi\omega_os+\omega_o^2} \,\!, donde \omega_o \,\! es la frecuencia natural del filtro y \xi \,\! es el factor de amortiguamiento de este.

Conversion Analogica Digital

Qué es ANALOGICO y que es DIGITAL?

El término ANALÓGICO en la industria de las telecomunicaciones y el cómputo siginica todo aquel proceso entrada/salida cuyos valores son continuos. Algo continuo es todo aquello de puede tomar una infinidad de valores dentro de un cierto limite, superior e inferior.

El témino DIGITAL de la misma manera involucra valos de entrada/salida discretos. Algo discreto es algo que puede tomar valores fijos. El el caso de las comunicaciones digitales y el cómputo, esos valores son el CERO (0) o el UNO (1) o Bits (BInary DigiTs).




Ventajas de la comunicación digital
La transmisión digital es la transmisión de pulsos digitales entre dos puntos, en un sistema de comunicación. La información de la fuente original puede estar ya sea en forma digital o en señales analógicas que deben convertirse en pulsos digitales, antes de su transmisión y convertidas nuevamente a la forma analógica en el lado del receptor.

Algunas de las VENTAJAS de la transmisión digital [con respecto a la analógica] son:

    1.-La ventaja principal de la transmisión digital es la inmunidad al ruido. Las señales analógicas son más susceptibles que los pulsos digitales a la amplitud, frecuencua y variaciones de fase. Esto se debe a que con la transmisión digital, no se necesita evaluar esos parámetros, con tanta precisión, como en la transmisión analógica. en cambio, los pulsos recibidos se evalúan durante un intervalo de muestreo y se hace una sola determinación si el pulso está arriba (1) o abajo de un umbral específico (0). 2.-Almacenamiento y procesamiento: Las señales digitales se pueden guardarse y procesarse fácilmente que las señales analógicas. 3.- Los sistemas digitales utilizan la regeneración de señales, en vez de la amplificación, por lo tanto producen un sistema más resistente al ruido que su contraparte analógica. 4.- Las señales digitales son más sencillos de medir y evaluar. Por lo tanto es más fácil comparar el rendimiento de los sistemas digitales con diferentes capacidades de señalización e información, que con los sistemas analógicos comparables. 5.- Los sistemas digitales están mejor equipados para evaluar un rendimiento de error (por ejemplo, detección y corrección de errores), que los analogicos. 6.- Los equipos que procesan digitalmente consumen menos potencia y son más pequenós, y muchas veces con más económicos.
Algunas de las DESVENTAJAS de la transmisión digital son las siguientes:
    1.- La transmisión de las señales analógicas codificadas de manera digital requieren de más ancho de banda para transmitir que la señal analógica. 2.- Las señales analógicas deben convertirse en códigos digitales, antes que su transmisión y convertirse nuevamente a nalaógicas en el receptor. 3.-La transmisión digital requiere de sincronización precisa, de tiempo, entre los relojes del transmisor y receptor. 4.- Los sistemas de transmisión digital son incompatibles con las instalaciones analógicas existentes.



La conversión Analógico-Digital consta de varios procesos:
  • Muestreo
  • Cuantización
  • Codificación




Toda la tecnología digital (e.g. audio, video) está basado en la técnica de muestreo (sampling en inglés). En música, cuando una grabadora digital toma una muestra, básicamente toma una fotografía fija de la forma de onda y la convierte en bits, los cuales pueden ser almacenados y procesados. Comparado con la grabación analógica, la cual está basada en registros de voltaje como patrones de magnetización en las partículas de óxido de la cinta magnetica. El muestreo digital convierte el voltaje en números (0s y 1s) los cuales pueden ser fácilmente representados y vueltos nuevamente a su forma original.

Razón de muestreo
La frecuencia de muestreo de una señal en un segundo es conocida como razón de muestreo medida en Hertz (Hz).
    1 Hz = 1/seg
La razón de muestreo determina el rango de frecuencias [ANCHI DE BANDA] de un sistema. A mayores razones de muestreo, habrá más calidad o precisión.
Por ejemplo en audio digital se usan las siguientes razones de muestreo:
    24,000 = 24 kHz - 24,000 muestras por segundo. Una muestra cada 1/24,000 de segundo. 30,000 = 30 kHz - 30,000 muestras por segundo. Una muestra cada 1/30,000 de segundo. 44,100 = 44.1 kHz - 44,100 muestras por segundo. Una muestra cada 1/44,000 de segundo. 48,000 = 48 kHz - 48,000 muestras por segundo. Una muestra cada 1/48,000 de segundo.
Una señal de audio muestreada a 48 KHz tiene una mejor calidad [el doble], que una señal muestrueada a 24 KHz. Pero, una señal muestreada a 48 KHz, ocuparía el doble del ancho de banda que la de 24 KHz. Por lo que si queremos mayor calidad, lo perdemos en ancho de banda. Cuando bajan archivos en Internet MP3 por ejemplo, éstos tienen diferentes calidades, un archivo MP3 de mejor calidad, ocupará mayor espacio en disco...

La calidad de un disco compacto [CD] equivale un muestreo de 44.1 KHz a 16 bits, éste es el éstándar. Si decimos que los archivos MP3 tienen calidad de CD, es que están muestreados a 44.1 KHz a 16 bits.
Una última pregunta!

¿Qué razón de muestreo es la suficiente para que al ser digitalizada una señal analógica y al realizar el proceso contrario, digital-analógico, la señal sea idéntica [o casi idéntica] a la original?

La respuesta es el Teorema de Nyquist....

Es el proceso de convertir valores continuos [e.g voltajes] en series de valores discretos.

Por ejemplo el audio digital [e.g. MP3, WAV, etc] tienen dos características bien importantes, el muestreo (tiempo) y la cuantización (nivel).

Mientras que el muestreo representa el tiempo de captura de una señal, la cuatización es el componente amplitud de el muestreo. En otras palabras, mientras que el muestreo mide el tiempo (por instancia 44,100 muestras por segundo), la cuantización es la técnica donde un evento analógico es medido dado un valor númerico.

Para hacer esto, la amplitud de la señal de audio es representada en una serie de pasos discretos. Cada paso está dado entonces por un número en código binario que digitalmente códifica el nivel de la señal. La longitud de la palabra determina la calidad de la representación. Una vez más, una palabra más larga, mejor la calidad de un sistema de audio (comparando una palabra de 8 bits con una de 16 bits o 32 bits) (ver figura).

El bit de resolución de un sistema define el rango dinámico de el sistema. 6 dB es ganado por cada bit.

Por ejemplo:

8 bits equivale a 256 estados = 48 dB (decibeles)
16 bits equivalen a 65,536 estados = 96 dB.
Entonces, se debe de tomar muestras a tiempos menores y se debe de cuantizar a mayores niveles (bits), si sucede lo contrario suceden errores de cuantización.
La codificación es la representación númerica de la cuantización utilizando códigos ya establecidos y estándares. el código más utilizado es el código binario, pero también existen otros tipos de códigos que son empleados.

A continuación se presenta una tabla donde se representan los números del 0 al 7 con su respectivo código binario. Como se ve, con 3 bits, podemos representar ocho estados o niveles de cuantización.

En general
    2(n)= Niveles o estados de cuantización
donde n es el número de bits.

NúmeroCódigo binario
0000
1001
2010
3011
4100
5101
6110
7111